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Abstract

The steady-state dynamic fields near a rapidly propagating crack tip

in an elastic perfectly-plastic material have been investigated for the case

of Mode-Ill fracture. For arbitrary values of the dimensionless crack-tip

speed (M) the inner solution consists of a central-fan field ahead of the

crack tip and a uniform field in its wake. It is shown that the inner solution

is valid in a "boundary layer" which shrinks on the crack tip in the limit of

vanishing M. For small M the outer solution was found as a regular perturbation

expansion in M, with the quasi-static solution as its first term. A uniform

expansion over the polar angle 8 measured from the plane of the crack was also

obtained; its first term displays the connection between the inner and outer

solutions.
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1. Introduction

In a recent paper the authors have investigated dynamic effects on the

fields of stress and strain near a rapidly propagating crack tip in an elastic

perfectly-plastic material [l). For the steady-state case it was found that

the dynamic near-tip fields can be expressed as simple-wave solutions of the

governing system of hyperbolic partial differential equations. These solu-

tions are independent of the dimensionless distance to the crack tip, r/rp

but they do depend specifically on the dimensionless crack-tip speed M. For

Mode-Ill crack propagation the simple-wave solution in the near-tip field is

a combination of a centered-fan field and a uniform field. Explicit

expressions have been presented in Refs.[l] and [2].

The solutions that were obtained in Ref.[l] show some anomalies in the

transition from the dynamic to the quasi-static solution. As the crack-tip

speed, M, decreases the expressions for the stresses reduce to the ones for

the corresponding quasi-static solution, as might be expected on the basis of

intuitive reasoning. This is however not true for the strains, which become

unbounded in the limit of vanishing M. In Ref.[l] it was speculated that the

transition from dynamic to quasi-static conditions with decreasing crack-tip

speed is effected because the dynamic solution is asymptotically valid in a

small edge zone, which shrinks on the crack tip in the limit of vanishing

[. crack-tip speed.

In this paper this non-uniform transition has been investigated in detail

in the plane of the crack for the case of crack propagation in anti-plane

strain (Mode-Ill). It is shown that for small crack-tip speeds the complete

near-tip solution consists of the outer solution, which is a regular
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perturbation expansion in M, with the quasi-static solution as the first term,

and the inner solution, which is of completely different nature with a strong

influence of dynamic effects. The inner solution is valid in an edge-zone which

is analogous to a boundary layer. The first term in a uniform expansion over the

polar angle e measured from the plane of the crack displays the connection between

the inner and outer solutions.

The governing equations and the boundary conditions are stated in Section 2.

The outer solution, its relation to the quasi-static solution, as well as its

inadequacy in the immediate vicinity of the crack tip have been discussed in

Section 3. The results for the inner solution have been summarized in Section

4. It is shown in Section 5, that certain functions which define the fields for

small polar angle from the plane of the crack, satisfy a system of coupled

ordinary differential equations. An investigation of the singular points in

the phase plane and an inspection of the trajectories of the solutions of these

equations as the distance to the crack tip decreases, reveals that the expressions

of Section 4 do indeed provide the solution in an edge zone. Exact solutions in

implicit form for the coupled ordinary differential equations mentioned above

have also been obtained in Section 5, and these solutions reproduce the inner

solution as well as the outer solution. Finally the coupled equations have

been solved numerically, and the results have been plotted vs. r/r and M, to
p

show the transition of the inner solution in the edge zone to the outer solution

in the'far-field".

is
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2. Governing Equations

A coordinate system (x,y,z) is attached to the moving crack tip as shown

in Fig. 1. The assumption that a steady-state has been established relative to

the moving crack tip, implies that absolute time derivatives take the following

forms relative to the moving coordinate system:

at( ) -v ax(  a tt( ) v2 xx( ) (2.1a,b)

In the moving coordinate system steady-state deformation in anti-plane strain

is defined by a displacement in the z-direction, which is denoted by w(x,y).

The corresponding stress components are ax(x,y) and ay(X,y).

In view of (2.1b) the equation of motion becomes

aa +aao f pv 2a w (2.2)
x axz ay yz xx

The Tresca yield condition is

02 + a2 - k2 "  (2.3)

xz yz

where k is the yield stress in shear. By virtue of (2.1a), the Prandtl-Reuss

equations for an elastic perfectly-plastic solid reduce to the forms

a w = U I o - Ao (2.4)

a, W - i 1 3a - Aa A.> 0 (2.5)
xy x yz yz,

Here p is the elastic shear modulus, and A is a non-negative proportionality

factor, which may vary in space.

In the region of plastic deformation the yield condition is identically

satisfied by

a - k sin , - k cosw (2.6a,b)

Elimination of A from (2.4) and (2.5), and the use of (2.2) and (2.6a,b) then

yields the following system of equations

I II i- i ---,,
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cosw aw + sinw ayW + M2  a (2.7)

cosw aw +sinw 3 w + h -x 0 (2.8)
1X x y x 1

where

w and w y yw (2.9a,b)x xy y

M = v/(U/P)h (2.10)

The condition of vanishing o on the crack faces yields by virtue of (2.6b)
yz

y = 0, x < 0: w = w/2 (2.11)

Displacement anti-symmetry relative to y - 0 implies that w - 0 for y - 0.

Hence w = 0, and thus by (2.6a)x

y = 0, x > 0: W = 0 (2.12)

In the polar coordinate system shown in Fig. 1, (2.7) and (2.8) have

the forms

cos(w-0) D w +.! sin(w-0) W +r r

VM2  aw sine a (2.13)+ (Cose r x r OW) 0

Icos(w-@) a w + 1 sin(w-0) Dw +r x r x
iI

+ k (cos a - L sine aeW) - 0 (2.14)

3. Far-Field Solution

Let us consider regular series expansions for w and w x with respect to

the "Mach number" M defined by (2.10)

W - W +MWI + • (3.1)

V w + MWx, + ... (3.2)
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For the leading terms w and w we obtain the following equations
0 xo

c°s(W-) a ro +- sn(wo-) 8u° = 0 (3.3)

cos(w-) 3 w + l sin(wo-O) a w +
0 r xo r 0 Oxo

+ (cosO - - sin6Bew) W 0 (3.4)11r o r a0

These equations govern the quasi-static problem, which was discussed by

Chitaley and McClintock [ 3 ]. For small values of r/rp (where rp defines the

boundary of the plastic domain) we obtain (see Ref. 3 )

S0- (3.5)

or

k sin (r) + f(e) (3.6)Wxo r

P

where f(O) is an arbitrary function of 0.

It is of interest to examine the magnitude of the inertia term, M
2 x wx ,

which would correspond to the quasi-static solution. By the use of (3.5) and

(3.6) we find

m2 Mw k M2 [_n(r f cs sin29 (3.7)
ST1- [r rn Cos 0

On the other hand, if the stress derivatives appearing in Eq.(2.2) are computed

on the basis of (3.5) and (3.6), it is found that they vanish identically.

Equation (3.7) then suggests that the quasi-static approximation is not valid

in a small neighborhood of the crack-tip defined by r/rp - O(M2) (we shall

make a more accurate estimate in a later Section). The subsequent terms in the

series (3.1) and (3.2) do not remove this nonuniformity of the approximation.

>4.
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Thus the regular expansion with respect to M cannot be accepted in the

immediate vicinity of the crack-tip. It appears that this solution represents

an outer or "far-field" expansion.

4. Near-Field Solution

In a recent paper Achenbach and Dunayevsky [ 1 ] have shown that the

solution (w,w x) to Eqs.(2.7) and (2.8) is either singular near the crack tip,lx

or it is represented by a centered fan-field in combination with a uniform

field. Since it was not possible to obtain a singular solution, the centered

fan + uniform field solution was considered in some detail. The solution was

obtained in the following form [ 1 , see also 2 ):

O<e<e
0 < -i<

w = k cos [Msin2e + (l-M2sine) 1cose] (4.1)
x VM

a = -k[(±-M2sin2G)1 - Mcos6] sine (4.2)

! 0 = k[(l-M2sin2G)2 cos6 + Msin2G] (4.3)
yz

' e <e< r

axz -k, ayz 0 w -kw/PM (4.4a,b,

where

* tan l(I/M) (4.5)

In the limit M - 0 the stress fields reduce to the corresponding quasi-

static fields. This is, however, not true fer the strains, which become

unbounded as M - 0. Difficulties of this kind in the transition from the

dynamic to the quasi-static solution as M - 0 could have been anticipated

K * from the structure of the governing equations. As M * 0 the two distinct

families of characteristic curves of Eqs.(2.6) and (2.7), which are defined

by
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dx M (4.6)
dy -osw t--sirM 4.6

merge into one family, defined by

dxd = cos (4.7)
dy

Such a degeneracy usually leads to a non-uniform transition, and the

appearance of a "boundary layer". Some examples are given by Cole [4 ].

Another indication of a non-uniform transition is given by the form of

the equations in the hodograph plane. To transform (2.7) and (2.8) to the

hodograph plane we introduce the following changes of variables 1 5].

a _ 1 , x J - - (4.8a,
3w 3y '3- w ax

ax = J-i w 1z =J - 1  C a
3w ay ' 3w ax (4.9a,b)
x x

where J is the Jacobian

3 3w aw 3

ax Dy ax ay (4.10)

In the hodograph plane Eqs.(2.7) and (2.8) take the form

cos - sin x k _X 0 (4.11)
w 3w si w- aw =SWx x

-cos ? + sinw ax +- 0 (4.12)
x

This linear system of equations can be reduced to a single equation of the

second order

k 2 2y - M2 32y + M2cotw 11 i y 0 (4.13)

3w2  3w2  3w si xaw 3x

IS
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When M - 0 the second order derivative 32y/9w 2 disappears, which indicates

that an asymptotic expansion with respect to M cannot be uniform.

On the basis of the foregoing observations it may be assumed that the

field near the crack tip is of different forms in two zones. The outer

solution in the "far field" is a regular expansion in M as given by (3.1) and

(3.2), where the leading term represents the quasi-static solution. The effect

of inertia is relatively small in this far-field. Inertia is, however,

important in the inner solution in the near field, represented by (4.1)-(4.5).

The near-field can be thought of as a "boundary layer". In the present

geometry the terminology "edge zone" is, however, more appropriate. In the

edge-zone the inertia effects appear to remove the singularity of the quasi-

static strain component.

In the next section we consider the matching of the inner solution and the

outer solution, and the shrinking of the edge-zone on the crack tip as M 0.

K'
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5. Solution in the Plane of the Crack

Matching of the far-field and near-field solutions has not been accomplished

for arbitrary values of the polar angle e. It is, however, possible to investi-

gate the matching for small values of 0, by seeking a solution in the following

form

W= c1(r) 6 + w (r) e3 + . . . (5.1)

w = w (r) e + w (r) 0 3 + (5.2)
X1 x3

Substitution of (5.1) into (2.3) and (2.4), and collecting the terms of equal

powers of e , gives for the first approxima.tion the following equations

d--+ +1 wl _ iM2  0 x (5.3)

dr r k 'Ir

dWx X1 wX1 (W 1I- 1)  k dw 1l
dr + w- ( rll 0 (5.4)

r p d r

At this stage it is useful to introduce new variables

-MW +i1 J MWl (5.5a,

Inserting (5.5) into (5.3) and (5.4) we arrive at

dJ
(I+M) + (L+M) J - 2k (J+-J-)J . 0 (5.6)

dJ

(l-M) + (l-M)J-- (J+-J-J- = 0 (5.7)

where the following change of variables has been used

a= -Ln(r/r ) (5.8)
p

Let us consider the solutions to Eqs.(5.6) and (5.7) in the phase plane

.4



10

(J+,J_). The singular points are the solutions to the following equations

(l+M)J+-k (J+-J )J+ = 0 (5.9)
+ 2k +

(l-M)J - (J-J)J =0 (5.10)

2k + -

Equations (5.9) and (5.10) define three singular points, whose position and

character are given by

1) J+ = J_ = 0 ; stable focus (5.11)

2k
2) J_ = 0; J+ = (I+M) ; unstable node (5.12)

2k

3) J+ = 0; J = -(I-M) - ; saddle point (5.13)

The nature of the singular points given by (5.1l)-(5.13) determines the phase

flow pattern, i.e., the trajectories of the solutions as a varies, shown in

Fig. 2 (see e.g. Ref. [ 6]).

Since no limit cycle or center point exists, the trajectories beneath the

separatrix line AA' run towards infinity as a (r-*O). Along these lines

J+ and J_ , and consequently w and wxl, become unbounded. However infinite

growth of w leads to an oscillation of the stress field (with increasing

frequency) which is not admissible from the physical point of view. Thus this

domain of the phase plane falls outside our consideration.

The phase flow above the separatrix line AA' tends to the origin J+ W J_ 0

so that for a' (r-*O) we have J+ - 0, J +0, and consequently w I- 0,

-W 0. This result would correspond to a uniform zero field ahead of the

crack tip. The hyperbolicity of the governing equations (2.7) and (2.8) then

would imply a zero field for the whole loading domain, which does, however, not
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satisfy the boundary condition on the crack faces and therefore has to be

rejected.

Thus we have no other alternative but the trajectory along the

separatrix AA . There is however a "forbidden" region in the phase plane

which is defined by the condition A > 0. It follows from (2.4), (2.5) and

(5.1), (5.2) that

k A Wxl (5.14)r

The requirement A > 0 leads to the inequality

1 i (J++J) > 0 (5.15)

x 2M -

which implies that we have to consider the part of the separatrix which lies

to the left of the bisector J+ = -J_.

Thus, when a (r+O) the solution moves along the line AA' toward the

point 3. Let us now find the solution in the neighborhood of the point 3.

Linearization of Eqs.(5.6) and (5.7) near this point leads to the following

equations

dJ+= 2Md M J (5.16)

da 1+M +

dJ 2k (5.17)'" --- -J+ + J - + (l-M) (5.17

In terms of the variable r the solution has the form

jJ+ M C--3 (r/rp) 2 (5.18)

J = - (-M) + C(r/r ) 2M/(I+M) (5.19)
1.I p

where C is an arbitrary constant and (5.8) has been used. Hence by virtue of

(5.5) we obtain
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k I+5M 2M/ (I+M)

k (1-M) + C (r/r (5.20)Wxl

4M

W 1 + I+M (r/r) 2M/ (+M) (5.21)

Hence we have

-- (1-M)e + 0 [(r/r )2M/(I+ M)] (5.22)
p

Wx : wl - _._M(1-M)8 + 0 [(r/r) 2M /(l+ ) (5.23)

The dominant terms of the expressions (5.22) and (5.23) coincide with those of

the expansion of the near field, (4.1) and (4.4), for small e. This result

confirms the validity of the simple wave solution near the crack tip.

Equations (5.6) and (5.7) can be integrated to yield the following

solution in implicit form

J+ - A (r/rp)2M/(l+M) ;J-1(l-M)/(l+M) (5.24)

2M/(I+M) -2M/(l-M) +BJ r -1I(,+M 1 +ML -B +,B J1(5.2+)
2M , 2M, r -M2k - -r r .p p

Here A and B are constants of integrations and F(p,q,r,s) is the hypergeometrical

function. The trajectory along the separatrix AA' corresponds to B - 0. This

follows from the observation that the separatrix crosses the line J+- 0 at the

point 3, which is defined by (5.13)

It can now be verified that for (r/rp) 0 0, (5.24) and (5.25) yield
4 p

J+ - 0 and J_ - (2k/u)(I-M), which correspond to w1 + 1-M and wxl -(k/uM)(1-M).

These results agree with (5.20) and (5.21).

Next we consider (5.24) and (5.25) in the limit M * 0. It is noted from

(5.5) that for M -0 we have J+- -J_ Since J < 0, the constant A in (5.24)

must equal unity: A - 1. For M # 0, the combination of (5.5a,b) and (5.24)

-I
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then yields

k 2M
(n(MW +k) M kn L) + M In w W1 (5.26)xl + 1 r 1+M xl 1 k

To expand (5.26) for small M we require r/r > 6 where 6 is such that

- r 0 1 (5.27)

Equation (5.26) then yields

wl k [9,n() - w kn(w)] + O(M) (5.28)xl 'P r

In deriving this expression, it was taken into account that J < 0.

For the hypergeometrical function in Eq.(5.25) we find for small M

1+1 1 +1+M r 2M/I+M -2M/I+M1+, - ,- (-) IJI )

2M, 2M.. .. If (M-1)+OM) + + o(M2)  (5.29)

Here B(x) is the a-function

$( 1 E n 15302(x = x(x+l)...(x+k) 2 (530)

By virtue of (5.29), (5.30) and (5.25) we obtain for M+O

1 (M -(1+M)- -(MW k) (5.31)

For (r/r ) > 6 the formulas (5.26) and (5.31) imply
p

k r +k k(.2"",wxl t- (-) +- Zn ) (5.32)
1r xi 1P 1.1

p
This result agrees with the quasi-static solution given by (3.5)-(3.6), which

coincides with the dominant terms of the outer solution for small e, as
given by (3.1)-(3.2).

4!
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To follow in some detail the phase flow when M + 0 it is convenient to

consider the (w x,) phase plane shown in Fig. 3. The point of intersection of

the separatrix AA' with the u-axis should be located between I-M and l+M. The

angle y of intersection of the J+- and J_-lines, is given by

y - n - 2 tan- (1/M),

which tends to zero when M - 0. The abscissa of the saddle point 3 is

W3 = 1-M and the abscissa of the node 2 is w 2 = 1+M, which both tend to l as

M - 0. Thus the singular points 2 and 3 shift to infinity as M - 0. For M S 0

the phase flow has degenerated as shown in Fig. 4. The separatrix has turned

into a straight line which is parallel to the w -axis and has the abscissax

f= 1. The magnitude wxl has become unbounded alons this line.

In summary, for small values of the angle e the solution given by (5.24)

and (5.25) matches the near field (4.1) and (4.3) to the far field (3.5) - (3.6)

for small values of the angle 8 . The region defined by £n(r/r) - O(M-I) can
p

be identified as an edge zone.

The implicit form of (5.24) and (5.25) is not convenient for the computation

of curves. Equations (5.6) and (5.7) have, therefore, been solved numerically.

The function

Wx (J+ + J_)/2M

has been plotted in Fig. 5. The corresponding quasi-static solution, which is

indicated by M - 0, has also been plotted. The quasi-static solution for Wxl

is singular at r/rp - 0, while the dynamic solution remains bounded. The

curve for M - 0.01 is very close to the one for M : 0, i.e., to In(r/r ), in
Ii p

the region r/rp > 6, where 6 is the "length" of the edge zone in the plane of

the crack. An estimate of the length of the edge zone is indicated in Fig. 5.
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Fig. 1 Propagating crack tip (velocity v) with moving coordinate
system
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Fig. 2 Phase plane with singular points, for Eqs. (5.6) and (5.7)
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IFig. 3 Phase plane (w,w,~ with singular points for Eqs.(5.3) and (5.4)
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